Thoughts on the practicality of Terabit Ethernet

Kai Cui, Peter Stassar Huawei Technologies Co., Ltd.

www.huawei.com

Supporters

Ghani Abbas, Ericsson Pete Anslow, Ciena Chris Cole, Finisar Xi Huang, Huawei Jonathan King, Finisar Jeff Maki, Juniper William Szeto, Xtera Steve Trowbridge, ALU Wenyu Zhao, CATR

Introduction

- BWA Ad Hoc has presented continuing growth of bandwidth demands in core and transport layers beyond 100Gb/s
- Next rate beyond 100G: 400Gb/s or 1Tb/s?
- > A 400G based CFI is being considered
- This presentation explores the options for 1Tb/s

100GbE Optics Overview

- Broad market for the existing 100GbE technology is still developing
- > 100GBASE-LR4 transceivers are not yet manufactured in high volume
- Alternative technologies for 100GBASE-nR4 are being investigated for addressing short reach:
 - ✓ 4x25G Parallel
 - ✓ PAM-N

but have not yet been proven to be sufficiently feasible to justify a new SMF PMD at 100G

How to create a 1Tb/s PMD on the basis of feasible technology and acceptable cost?

- Cost target for 1Tb/s needs to be at or below 100G cost/bit*sec and required R&D investments should be modest
- This would suggest to leverage current generation Ethernet technology for 100G
- > 100GbE technology based architecture would imply 40 lanes at 25G, which clearly would imply impractically big packages and large amount of interface signals

Alternative technologies for 1Tb/s PMD

- A 1Tb/s PMD would need a sufficient reduction in electrical and optical interfaces lanes to enable reasonably small packages
- A technical alternative would be the usage of advanced modulation formats, e.g. multi-level signaling, in order to:
 - \checkmark Move complexity into the electronics to simplify the optics
 - \checkmark Reduce the optical component count and associated packing complexity

Туре	#Fiber	Number of Physical Lanes	Bits/Symbol	Symbol Rate
100GBASE-LR4	1	40	1	25G
PAM-4	1	20	2	25G
PAM-16	1	10	4	25G

Alternative Options for a 1Tb/s PMD

More sophisticated modulation format (amplitude and phase)

- ✓ Re-use of line side technologies for 100G and 400G to minimize the number of lanes
- \checkmark Need advanced CMOS IC and PIC technology

Alternative	Bits/Symbol	Rate, GBaud	5X IQ Modulator X Pol.
5λx200G DP-16QAM	4	25G	PBS IQ Modulator Y Pøl. PBC
10λx100G DP-QPSK	2	25G	LD Comb Generator

火 HUAWEI

Feasibility of advanced modulation format technologies

- Neither the multi-level nor the phase modulation format based technologies have been demonstrated to be sufficiently mature to justify usage in client PMDs towards 100Gb/s to 1Tb/s applications
- It probably will take many years to come before integrated optical technology has sufficiently matured to achieve satisfactory performance and permit low-cost manufacturing for the volumes expected for these new PMDs

Summary

- The technology needed to implement advanced modulation formats is currently very far from technical and economic feasibility
- This would suggest that on the short term 1Tb/s would be a too high rate from an engineering perspective and it is unlikely to justify the major R&D cost needed to develop the required technology platform
- TTb/s does seem a "bridge too far" at least for the coming 3 to 4 years
- 400Gb/s appears to be the most sensible choice at this moment

THANK YOU

